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Abstract 

An attempt wall made to give a consistent description of high energy hadron 
interactions starting with the physical assumption that only “bard” processes 
contribute to the Pomeron structure. Ukg the general properties of a “bard” 
Pomeron in perturbstive QCD aa equation for shadowing corrections is sug- 
gested and solved. It allows one to develop the new approach to high energy 
hadron colllaions which generalizes the 80 called eikonal approximation widely 
used to describe the shadowing correctiona for both badron and nucleus scatter- 
ing at high energy. New formulas are also suggested for the large rapidity gap 
survival probability which crucially differ from the eikonal ones. 
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1 Introduction 

Large-cross - section physics at high energy is usually regarded as dirty one since there 
is widespread delution that it is impossible to develop any theoretical approach to 
such processes based on our microscopic theory - QCD. It is widely believed that the 
gap between current phenomenological models for high energy hadron and/or nucleus 
scattering and QCD is so big that it is difficult to see any interrelation between them. 
The main goal of this paper is to develop an approach that is based on QCD and 
establishes very transparent relationship between high energy “soft” scattering and 
our microscopic theory. 

Of course, in order to do this we need to make a hypothesis. Our key assumption 
is that only “ hard” processes contribute to the Pomeron structure. It means that we 
can describe the Pomeron in the framework of the perturbative QCD. Let me list the 
arguments that show that the assumption is not so crazy as it seems to be at first 
sight. 

1. In any attempt to fit the experimental data the slope of the Pomeron trajectory 
(a’) turns out to be very small, at least not bigger than a’ = 0.25 GeVm2 [l] [2] [3] , 
We use the following notation for the Pomeron trajectory np(t = -qf) = 1 + A + a’t. 

&. The experimental slope of the diffractive dissociation in the system of secondary 
hadrons with large mass is approximately two times smaller than the slope for the 
elastic scattering. In terms of Pomeron phenomenology this fact results in the small 
proper size of so called triple Pomeron vertex ( Gsp). In first approximation we can 
assign no slope for the triple Pomeron vertex to describe the experimental data on 
diffraction dissociation. 

3. The idea that gluons inside a hadron are confined in the volume of smaller radius 

(RG % O.lFm < Rh - 1Fm) is still a working hypothesis which helps to describe the 
experimental data ( see ref. [l] for the details ). 

4. The discovery so called “semihard” processes in QCD [4] which are responsible 
for the total inclusive cross section of hadron interaction at high energy and lead to 
the value of the total cross section compatible with the geometrical size of the hadron 
makes the assumption is the most probable and natural way to provide the matching 
between “hard” and “soft” processes. 

5. All previous experience in multiperipheral models shows that one could de- 
scribe the global features of the “soft” interaction at high energy but only if the main 
transverse momentum of produced hadrons is large enough ( of the order of 1GeV). 

6. In the eikonal approach the QCD - Pomeron is able to describe the current 
experimental data on total and elastic cross section and the slope (see ref. [9] for 
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details). 
I hope the above arguments convince you that a hard Pomeron should not be bad 

first approximation to high energy scattering. This hypothesis has at least three big 
advantages: simplicity, natural matching with QCD at small distances and the obvious 
possibility to check it experimentally. 

Now I am ready to discuss the general strategy of the approach. The first step 
is a review the main properties of the QCD Pomeron. It will be shown in section 2 
that the QCD Pomeron has no slope (a’ = 0) and can be considered as an exchange 
with definite impact parameter b,. Moreover in the leading log approximation the 
interaction between Pomerons cannot change bt. This fact allows us to regenerate the 
old Reggeon Field Theory [5] for the interaction of hard Pomerons in section 3. In this 
section the new equation for the shadowing (screening ) corrections will be discussed 
as well as solutions to these new equations. Physical applications are collected in 
section 4 where we discuss such important problems as the behaviour of the inclusive 
cross section and the large rapidity gap survival probability. The results and the their 
physical meaning will be discussed in the Conclusions. 

2 “Hard” Pomeron in QCD 

As has been discussed in the introduction we assume that only hard processes con- 
tribute to the structure of the Pomeron. It means that we believe in some natural cut 
off in momentum (Qo) and that only production of quarks and gluons with transverse 
momenta J+ > Qo are dominant in the Pomeron. Since we assume that the value of 
Qo is so large that a,(&:) < 1 we can use perturbative QCD to calculate Pomeron 
exchange in the leading log approximation (LLA) 
a8 small ones: 

considering the following parameters 

4Q:) < 1, a.(Q:)ln$ < 1, but a(Qi > 1 . 
0 

The answer for the scattering amplitude in LLA is the summation of the perturbative 
serias: 

f(+t;k’,Qi) = .%G,(~,(Q~)l=~)” + O(o.(Qi);a,(Q:)l=$) , (1) 0 

where k2 and Qi are virtualities of the scattering partons (quarks or gluons ). 
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During the last two decades the answer for the sum of eq. (1) has been studied in 
great detail (see original papers [7] [6] or several reviews [4] [ES] [lo] ). I would like to 
outline the solution to this problem, using a little bit different technique which will be 
very convenient for further presentation. 

1. The Pomeron in LLA of the perturbative &CD at t=O. 
In leading logs approximation ( LLA ) we can reduce the problem of summation 

of the perturbative serias of eq. (1) to the solution of the so called ‘ladder’ equation 
(see Fig.1.). Namely, 

h(y, $1 = + / dy’/ $$q’, d%L(dr -4’) , (2) 

where y ( y’ ) is equal y = Ins/q’ ( y’ = Ins’/@ ), q2 and q” are virtualities of two 
slowest particles (see Fig.1). The function 4 is closely related to the gluon structure 
function in deep inelastc scattering,since 

a.(q*)+&(w, i’) = /z a.(d2)$(y = I= &, d2) . (3) 

To solve eq.(2) it is very convenient to introduce the auxiliary function 

Q(~,T = lnq’,z) = 6. &.&(~,T)+” . (4) 

It is easy to see from eq. (4) that the amplitude of gluon - gluon scattering or in other 
words the gluon structure function can be reduce to 

d(Y,$) = kL(Yr~) = $. *‘(Y,T,z = 1) . 

The partial cross section (&) can be calculated as 

MY,~) = $=+ * - ;! . “yap z, ,& 
We can also write down simple expressions for different correlators through the function 
q, such as: 

(n) = f,==1 , (7) 

(n(n - 1)) = 
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We can rewrite eq. (2) as the equation for rI! which is very simple if we assume that 
z - T’ < T and adopt the following expansion (as was first done in ref. [7]): 

Wy,r’,z) = qY,r,z) + “(;T’++Ft -T) + ;a’*~2T’z+T’ -v)’ + ... . (8) 

Finally the equation for q looks as follows: 

WY,T,G) @@(Y, T, z) 

BY 
= woxB(y,r,2) + 62 

at= ’ (9) 

where (see ref. [7] for details) 

too = 4N.n.In2 ; 6= 
7r 

+14<(3) . 

Eq. (9) can be solved by going to a Laplace representation and noting that ‘# depends 
on .z = +y : 

q&r) = /se (w=+f+(w, f) . (10) 

For $ the equation reads as follows: 

w = loo + Sf2, (11) 

which leads to the answer: 

*(Y,r,+) = 
I 

e[(w+6f’b + f’l$(f 1% . (12) 

Starting with the initial condition namely q(y = 0, T, z) = 6(~ - ~0) we can easily get 
the famous diffusion solution of the equation, namely: 

1 
*(y,r,z) = -- 

wa 

wm-* . 

Eq. (13) gives the solution that allows one to calculate both the amplitude and the 
multiplicity distribution using eqs.(5 - 7) and therefore it enlarges our possibility to 
study the Pomeron structure in the perturbative QCD. However the main reason why 
I gave this somewhat new derivation of a well known solution is to illustrate the new 
technique of the auxiliary function that I am going to use later on to get the solution 
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to the more complicated problem of Pomeron interaction. To demonstrate how this 
technique works let us calculate the multiplicity distribution,namely 

aTI 1 
-= 
0: cJ(Y,T.Z = 1) . J $&j*Q(YI”>4~ 

where the integration contour over + is to the right of all singularities of function q!. 
In the saddle point approximation we can perform the above integral and the answer 
can be written in the form: 

0, n+l -= 
rt J 

-exp[--(n+l)(ln(n+l) - l)-WOY - (T--Q)~(~~(~+ 1) - &)I . (14) 
WY 

From eq.(14) we can also calculate the mean (7 - ~0)’ at fixed multiplicity: 

((7 -Q) = I dT(T - %h,(Y,T) 

Gl(Y,T) . 

Using eq.( 14) we can find that 

((T - Toy) = 2; (n + 1) . 

Eq. (15) shows a very important property of LLA structure of the Pomeron, namely 
the fact that the mean log of the transverse momentum increases after the emission of 
n gluons. 

2. bt dependence of the LLA Pomemn. 
The main property of the impact parameter motion of the parton could be under- 

stood directly from the uncertainty principle, since 

Abt qi x 1 . (16) 

It means that Abt o( ; for each emission where pt is the typical transverse momentum 
of the parton. As we assumed pt > Qo > 1GeV for all produced partons, the displace- 
ment of the parton in bt we can consider as a small one. Moreover due to the emssion 
of gluons the mean transverse momenmtum increases at high energy or after n >> 1 
emissions. I hope that this discussion made natural the strict LLA result ( see refs.[6] 
[lo] [ll]) that the LLA Pomeron does not depend on the momentum transferred (t). 
Thus,in LLA of perturbative QCD we can consider the Pomeron as frozen in bt - space 
or in other words its exchange is proportional to 6(b,). 
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3. QCD motivated Pomeron. 
Now we can formulate what model for the Pomeron structure we are going to 

discuss as the first approximation to the “hard ” Pomeron. Namely, we assume that 
the Pomeron can be reduced to the simple formula: 

P(y,b,) = iewoYb(bt) . (17) 

Since we consider the case when initial and final virtuality are equal the oversimplified 
formula (17) does not take into account the power-like behaviour on y in eq. (13). 
Throughout the paper we will use this simplified version of eq. (13) but it should 
be stressed that it is not hard to incorporate the correct behaviour of eq. (13) in all 
our calculations, but the simplest expression of eq. (17) makes all our calculations 
so transparent that we prefer to use this form to clear up the main property of the 
screening (shadowing) corrections. 

3 Shadowing corrections. 

In this section we are going to discuss how to incorporate the shadowing ( screening 
) corrections in the framework of the simplified approach to the Pomeron structure 
given by eq. (17). There are two origins of the shadowing (screening ) corrections: 
the interaction between colliding hadrons due to multipomeron exchanges and the 
interaction between pomerons. The first one is usually taken into account by the 
so called eikonal approach which is really the only one that is in the market for the 
description of the shadowing corrections.During the last decade the eikonal approach 
has squeezed out the more general understanding of the origin and nature of shadowing 
(screening) corrections and has become a synonym of the shadowing correction in 
general. This happened partly due to the failed attempts to take into account the 
pomeron interaction in the framework of so called Reggeon Field Theory ( RFT) [5]. 
The main goal of this section as well as the whole of this paper is to revive the RFT and 
to suggest more general approach than the eikonal one to the shadowing correction. 

3.1 Eikonal Approach. 

Let me start with the review of the main ideas and formulas of the eikonal approach 
that are carried out most compactly in the impact parameter (b,) representation. 
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Our amplitudes are normalized as follows: 

where 

du 
-& = 4f(4W ; ctot = 4nlmf (a, 0) , 

f(s, t) = k / dbt exp’q.bt a(b,, a) 08) 

and 

a(s,bt) = $ / dq exp-iq.bt f (8, t) 

hence we have : VW = 2JdbtIm a(s, b,) and ~~1 = Jdbtla(s, bt)12 
Unitarity requires Im a(s, b,) 5 1. In order to satisfy the unitarity constraint it 

is convenient to express u(s, b,) in terms of the complex eikonal function ~(9, b,) with 
(Im x 2 0). i.e. 

a(~, b,) = i[l - eix(+‘*)] (20) 

which ensures that unitarity is restored on summing up all the eikonal multi-particle 
exchange amplitudes. 

All above formulas are general and the eikonal model starts with two assumptions: 
1. At high energies elastic scattering is essentially diffractive and therefore Rex 

is small. We assume Re x C 0, then the amplitude a(s, b,) is purely imaginary and 
determined by the opaqueness n(s, b,) s Im x . 

2. The opaqueness 

fl(S, b,) = & / dabte-‘q~btga(t)lmP(e, t) = aoO / zg(b, - b:)g(b;) , (21) 

where all notation are obvious from Fig.2 and t = -nf. Here 

g(b,) = & 1 d’bte-‘Qbtg($) , 

where g(t) is the vertex for the Pomeron - hadron interaction as seen from Fig.2. 
Eq. (21 ) establishes the direct relationship between the opaqueness and the Pomeron 
exchange. Within this assumption the equation (20 ) sums up the diagrams of Fig.3. 

The advantages of the eikonal approach are evident: the exceptional simplicity of 
the approach and the fact that this approach takes into account the natural scale for 
the shadowing corrections. It makes this model very attractive and popular. However 
it should be stressed that there are no theoretical arguments why this approach should 
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work. The eikonal model looks extraordinarily strange from the point of view of the 
parton or QCD approach. Indeed+ slight glance at the QCD parton cascade (see Fig. 
4) shows us that in spite of very complicated structure of this cascade the number 
of partons drastically increases mostly due to decay of each particular parton in its 
own chain of partons. No arguments have been found in QCD why this complicated 
structure of the parton cascade which could in principle be described as the Pomeron 
interactions (see Fig. 4) could be reduced to eikonal diagrams. The parton cascade 
for the eikonal diagrams looks very simple,narnely it is only production of the different 
parton chains by the fast hadron as it is shown in Fig,5. I would like to draw your 
attention to the fact that even in the simplest case of the deep inelastic scattering the 
structure of the partton cascade can be described better by a fan diagram than by an 
eikonal one (see Fig.6 and ref. [4] for details ). 

3.2 Pomeron interaction ( “ Fan” diagrams). 

In this subsection I am going to discuss “fan” diagrams contribution to hadron 
hadron scattering. I consider this problem as the next approximation to reality after 
the eikonal one. It certainly will be able to teach us how pomeron - pomeron interaction 
results in the shadowing correction. However I would first like to make some general 
remarks on the main features of pomeron interactions in QCD. 

1. Pomeron interactions in QCD. 
The main advantage of QCD in our problem is the fact that we can formulate 

what we are doing . Our Pomeron in QCD is well established object,namely LLA 
“ladder” diagrams which lead to eq. (17) in the first rough approximation. So in 
principle we can calculate in QCD the vertices of interaction between three, four and 
so on, “ladders”. In practice only triple “ladder” interactions have been calculated 
in specific kinematical regions where virtualities of all interacting partons were large 
enough ( see refs. [12] [13] [14] ) as well as the amplitude of two “ladder” rescattering 
(see refs.[15][16] ). Let me summarize what we have learned from these calculations. 

1. In perturbative QCD we can introduce vertices for three and four pomeron 
interaction (see Fig.7 ), which are local in rapidity. 

B2. All contributions with integration over small transverse momenta kt ( kt < Q,,) 
are cancelled. It means that we can justify calculations in perturbative QCD. 

S. The vertices y and A in Fig.7 have different order of magnitude in a,. Namely, 
it turns out that 

7 a Nca: ; A a a,. 
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4. The sign of pomeron - pomeron scattering amplitude A corresponds the attrac- 
tive forces [15] [16] as was duscussed many years ago by B.M. McCoy and T.T. Wu 

D71. 
5. Concerning bt - dependence of pomeron - pomeron interaction vertices we can 

also consider them as a 6 - function in bt. 
8. Strategy of approach. 
Based on this experience with QCD calculation I would like to suggest the following 

strategy of approach: 
1) We start from the simplest formula of eq. (17) for one Pomeron exchange. 
2) We introduce the vertices g(b,) for the Pomeron interaction with the hadron (see 

Fig.2). 
3) We describe the Pomeron - Pomeron interaction introducing triple Pomeron 

vertex(y ) and four Pomeron amplitude (A) w ‘c are local in rapidity and are pro- hr h 
portional to 6(bt) with respect to any impact parameter related to the interaction. 

3. Summation of the “fan” diagrams. 
To demonstrate the problems that we face in finding the screening correction con- 

tributions let me discuss the simplest nontrivial case: summation of the “fan” diagrams 
of Fig.6 only,neglecting even the pomeron rescattering (vertex X in Fig.7 ). 

To solve this problem we develop the same method of auxiliary function r 

qY,z) = % G(Y) zn , (22) 

in which the coefficients C,(y) constitute the probability amplitude for finding n 
Pomerons at rapidity y. For ‘I’(y, z) it is very simple to write down the equation: 

wf,4 = wgx fwY,S) 1 m 
BY ax 

-72x. 

This equation is nothing more than the different form of the equation for C, : 

dG(y) -- 
4/ 

= t&nC, - -y(n - 1)&-I . 

The physical meaning of eq. ( 24 ) is c. ear 1 fron Fig.S,the first term describes the 
propagation of Pomerons which do not interact with each other while the second one 
annihilates any one of the Pomerons in the interval dy,replacing it by two others. The 

‘As Br as I knowv this method was flratly spplycd to the problem of the shadowing correction in 
ref. [18]. 
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sign minus in front of this term reflects the shadowing (screening ) character of the 
interaction or in other word the fact that our scattering amplitude is pure imaginary 
at high energy. 

Eq. ( 23 ) can be solved and the solution is an arbitrary function of one variable 
‘3!(tc), where 

n = w(Y-y) + In1 -“1,. (25) 
w 

The function Q(K) can be found from an initial condition, which for our problem is 
the following ( see Fig. 6 for notations ): 

Q(K) = zg(b,-b;) at y = y. (26) 

From eq. (26) we can find that 

es 
Z=l+zeR 

and P = g(bt - b;) . e= 
l+zeR ’ (27) 

Finally to get the answer for the scattering amplitude at fixed impact parameter b, 
we need to substitute y = 0 and z = g(b:) 
previous equation. Thus 

in the definition of K and find !I!(&) from 

ar~(Y = In 8, b,) = I 3. g(bt - Wd4) 
2~ 2 + t+‘oY[l - J-g(b:)] ’ (28) 

4.Eikonal + “ Fan” diagrams. 
It is very instructive to get now the formula for the amplitude that takes into 

account eikonal and “fan” diagrams (see Fig. 9) together. Such a formula can be 
written in terms of the opaqueness n(a.bt) and eq. (20) if 

Q(Y = lns,bt) = eYDY J 
d=b’ 
$g(bt - b:)g(b:) + 4 w@‘,bt) - am(Y,bt,r = 011 . 

(29) 
The above expression for R takes into account in correct way the fact that two sets of 
the “fan” diagrams with many pomeron interaction coupled to top or bottom part of 
Fig. 9 - type diagram have the same common part - one Pomeron exchange. 

3.3 Rescattering of Pomerons. 

I have considered a toy - model for the origin of the shadowing correction in the 
previuos subsection, here I would like to discuss a selfconsistent aproach in which the 
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pomeron - pomeron rescattering will be taken into account, since this interaction seems 
to be the biggest one in QCD (A cc a, while 7 o( a: ). It means that I am going to 
sum up the diagrams of Fig. 10 - type or in other words we include selfconsistently 
the interaction of the Pomeron with the hadron which is of the order of cr, in QCD as 
well as the Pomeron - Pomeron rescattering ( A cc a.). 

The equation for the auxillary function G’ for this problem looks as a trivial gen- 
eralization of eq. (24),namely: 

WY, 2) - 
ay 

= wo2wY14 
ax 

+ xzl a%+) 
as . 

It should be stressed that eq. (30 ) d escribes the attractive interaction between 
pomerons ( X > 0 ) as was discovered many years ago by MC Coy and Wu [17] and 
has been recently rediscovered in QCD ( see refs. [15] [IS]). 

However this equation cannot be solved in such an easy way as eq. (24). First let 
us simplify a little bit the equation, introducing new variable 7 = lnz and going to 
w representation: 

qY,9) = J&e-ww) . (31) 

For $I the equation looks as follows: 

w$(w,ff) = (cd0 - xpg”) + Pyp . (32) 

Eq. (32) can be easily solved by going to a Laplace representation with respect to 7: 

In w and ~7 representation eq. (32) reduces to: 

w = (too - X)f + xp. 

So the solution of eq. (32) finally looks like 

Q(Y - y,T/) = J $qfp--) + fql . 

The function 4(f) should be found from the initial condition 

qy - y,q) = ,&&-l)“+ ~(bt;b:)l”e, = 1 - exp[-g(bt - b:)en] ; 
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dy=Y. 

To satisfy the above condition we need to choose the function d(f) equal to 

4(f) = Vf) 

and the solution can be rewritten in the form: 

Y!(Y - y,q) = E,=*(-I)“+’ Mb, - b:)eql” 
?L! 

@o - A)n+ xn’1tr-u) 
(37) 

Using the obvious relation: 

e(wf+Xf’)(Y-ll) = 
J 

e-ftl’d71. 1 J.so -A)(%---.j+ “‘I’ 

24-e 
.A(U , 

-’ ’ (38) 

we can rewrite the answer in a form more convenient for further discussions: 

G(Y = lna,bt) = J 
66’ 
-$Q(Y,‘l = lng(b:)) = 

Yb/ -2;;’ d${ 1 - exp( -g(b, - b:)g(b;)e-“‘) } . 2& . e-s . 

Eq. (39) can be simplified assuming the Gaussian for b, - dependence of g(b,), 
namely 

Qo(d = 80) e- 4 
db:) = ?rRa 9 (49) h 

where Rh is the radius of the hadron while os is the value of the cross section of the 
hadron - hadron interaction at sufficiently small energy s = 90. Performing integration 
over bt we get the result: 

Q(Y,b,) = 2 /dn’{ln[&e-4-v’] + c - 

., Ei(- (TIf!!)l e -%.jl.2~.‘&+pd~ 

At very high energy the dominant contribution in the integral over 7’ gives the value 
of ql - -(us - X)Y and 0 turns out to be equal for bf < ZT~(W,, - A)Y: 

Q(Kbt) = -$(w,-A)Y + 1n.z + C - 21 
h h 
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For b: > 2Rf,(wo - A)Y 

fl(Y,b,) = ~,-y-~ . 
h 

Substituting this expression for R in eq. (20) we can conclude that the total cross 
section increases logarithmically with energy: 

at a 2nR~ln.s. 

However this result depends crucially on the Gaussian parametrization of function 

g(b). If g(b) 0~ e -% ot + ln’a at high energy. 

3.4 Pomeron interaction ( General case). 

In this subsection I am going to consider the general case and sum up the diagrams of 
Fig. 11 - type,taking into account both the pomeron - pomeron rerscattering ( A) and 
the pomeron splitting into two pomerons (7+) as well as the pomeron annihilation ( 
7-) (see Fig.11 for notations). The first question that arises is why we can restrict 
ourselves to summing only diagrams of the tyupe of Fig.11 or in other words why 
we neglect the more complicated interactions among pomerons,for example the one 
pomeron transition to three or even more pomerons.To answer these questions we 
need to recall that in QCD we have the following order of the magnitudes for our basic 
interactions: 

9 =h; wo a &a. i A a a, ; 7- - 7+ a N,a: . (44) 

Summing the diagrams of Fig.11 - type we make an attempt to calculate the high 
energy amplitude within the accuracy of the order of O((a:lns)“). Indeed, if we 
consider the following set of the small parameters: 

a. < 1; u,lna > 1 ; rr:lns N 1, (45) 

we can reduce our problem to the summation of the Fig. 11 set of the diagrams. The 
reggeon diagrams give us the possibility to take into account in a constructive way 
the factorization property of QCD that is very general, at least more general than any 
leading log approximations. 

The equation for auxiliary function P for the general set of the diagrams of Fig.11 
can be written in the form: 

_ @v--Y,Z) = 
BY 
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woxaw-Y,4 

ax 

+ x ra a*w - Y, 4 

as 
_ 7+ s2 aw- - Ye 4 

ax 
+ 7- z aw-- - ~9) 

as . 
This equation can be simplified introducing the new variable 71 = In o and going to 

w representation (see eq. (31) ).For $(w,q) the equation can be reduced to the form: 

w$(w,q) = (wo - x - 7+eq - 7-e-v) &(w,q) 
dv 

+ (A + 7-e-9 pp) . (47) 
9 

Let us find the semiclassical slution of the equation substituting 

4(w, 9) = ew(xh 9) 1 

and assuming that 
@xh9) 

W 
< Idx(w)la 

dq ’ 
In this case eq.(47) can be reduced to the algebric one,namely 

dx dx w = [wg - A - 7+eq - 7-e-v]- + [A + 7-e-v] (-)“. 
4 dq 

(48) 

Solving this equation we can get the answer: 

lit(wlv) = d~(W).ed[~dv’~(~ + :-e-qs,. 

[A + 7+eq’ + y-e-+- w. - (A + -y+e+ + 7-e-v’ - ~00)~ + 4w( A + 7-e-n’) ] } 

However solution (34) can be reliable only at sufficiently large w namely at 

where x% < xz. At very small w however the last term in the eq. (32) turns out to 
be negligibly small,so solution (34) is able to describe this region too. The function 
d(w) can be found from the initial condition of eq. (26), namely: 

J $~G+~P{[~~ d~‘~( A + ;-e-v* ) 

[A + -y+ev’ + 7-e-v’ - wg - (A + 7+e+ + 7-e-q’ - ~0~)~ + &(A + 7-e-v’) I} = 
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= { 1 - exp[-e”g(bt-bi)]}. (50) 
However the solution given by eqs. (49 ) and (50) cannot be considered as trans- 

parent from a physical point of view. It is the reason why I would like to give another 
solution which has a worse accuracy but it is simple enough to clarify the situation 
and to demonstrate the main property of the solution. Let us assume that the last 
term in eq. (47) is small enough to be neglected. In this case the solution looks as the 
solution of eq. (23),namely that V! is a function of one variable ( *(a)) : 

where 

kc = Y-y - ~ln[ZI:+~~~. 

z* = 
-(coo - A) f \/(wo - A)’ - 47+7- 

Z’Y- 

and 
A = 27-(z+ -x-); x = e”. 

The function cl!(~) could be found from the initial condition (50) at y = Y . It is 
easy to see that @‘(a) is equal to: 

St _ x-s .e-AP--~) 

*(K) = 1 - ew-g(bt - bi) 1 =-=+ e-A(Y-u) 1 . 
a?-*-. 

(52) 

Using this solution we can calculate the last term of eq.(47). One can see that this 
term is small enough even at y = Y and becomes smaller at y + 0. 

Thus to get the solution of our problem or in other word to sum up all diagrams 
of Fig.11 - type we need to: 

1. substitute + = g(bi) in eq. (52), 
2. integrate over b:, 
3. calculate 0(s, b,) as 

n(Y = Ins, b,) = I 
d2b: 
2lr (53) 

{@(bt,b:,s(r+ = 7- = 0)) + 2 [T+t,b:,tc) - Q(b,,b:, n(y+ = 7- = 0) )] ) . 

4. substitute the opaqueness n(u, b,) in eq. (20). 
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4 Large rapidity gaps in hadron - hadron colli- 
sions. 

Eq. (47) gives us the possibility to discuss the behaviour of the total cross section 
and elastic cross sections as well as inclusive observables in hadron - hadron collisions. 
Here I am going to discuss only two problems: the energy behaviour of the inclusive 
cross section and the probability of a large rapidity gap. 

4.1 Inclusive cross section. 

Accordingly AGK - cutting rules 1191 the inclusive cross section can be calculated as 
sum of the diagrams of Fig. 12 -type. It is obvious that the formula for the inclusive 
cross section looks as follows: 

do A= 
dy 

Gm / !!!.$,(Y --,x = g(b,)) . / $k-.c(~,* = g(b:)) > (54) 

where all notations are clear from Fig. 12. go is the solution of eq. (47) but with a 
different initial condition as compared with eq. (50). Namely, 

qy-y=O,+) = 2. (55) 

In the approximation that leads to solution (51) one can find the answer for ‘Pi,: 

@inc(Y-Ytz) = 

L+ _ z-z. e-W-~) 

1 _ z e-A(Y-~) ’ 

Eq. (56) BO~VCZB the problem, allowing one to calculate the inclusive CKBBB section. 

4.2 Large rapidity gap. 

Dokshitzer, Khoze and gjostrand and Bjorken suggested [20] that one considered not 
the inclusive cross section of hard processes such as Higgs boson production for example 
(see Fig. 13 ), but the cross section for the event with a very interesting signature, 
namely, such that no hadrons are produced with rapidities between y1 and yr,except for 
the Higgs boaon and hsdrona from it’s fragmentation. To obtain the formulae for the 
cross section of such an event, we need to multiply the expression for the inclusive cross 
section (see eq.(54) by the probability that the partons with rapidity larger than yr do 
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not interact with partons that have rapidity less than ys. Introducing the probability 
P(y, - yz, S, b,) that no inelastic interaction takes place at impact parameter bt in the 
rapidity region yl -ya at energy 8, one can write the following formula for the survival 
probability of the rapidity gap 

W2l) = ~%.vdP(y~ - ya, 8, bt)dabt 
.f %mid% 

I (57) 

where abpd is the inclusive cross section (see eq.(54) and Fig. 12 ). To calculate (iSzl) 
one needs to estimate P(yl - yz, 8, b,). 

1. E&ma1 Approzimation. 
Fortunately it is easy to do in the eikonal approach. B - channel unitarity can be 

written in the diagonalised form,&. in bt - representation as 

2ima(a,bt) = la(a,bt)l’ + Gin(a.bt) (58) 

where 
ai, = 

I d’btGin(8,bt) . 

In eikonal approach one can see that from eq .(20) follows that 

(59) 

&.,(a, b,) = 1 - .-~n@.bt) . (6’4 

From the above equation we can conclude that the factor 

(61) 

describes the probability P(a, b,) which does no depends on y1 - yz within the eikonal 
approximation.Finally we can obtain the Bjorken formula [20] for ([Sal) substituting 
eq.(61) in the expression (57) for (I.!?[). 

2. General Approach. 
As has been discussed the eikonal approximation oversimplifies the structure of 

the parton cascade reducing the complicated parton cascade with a rich variety of 
different parton interactions to simple picture of Fig.5. Using the general equation 
(47) taking into account the interaction between Pomerons we are able to write down 
a more general expression for the survival probability of a large rapidity gap than 
eq.(61). We can also examine how important could be the parton interactions inside 
of the parton cascade for the value of the survival probability. To find the expression 
for (IS”l) we can use eq.(57) and a general expression for the opaqueness Cl (see eq. 
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(53) ) However we need to take into account that only inelastic interaction due to the 
Pomeron exchanges and the Pomeron interactions in the rapidity region yr - yr should 
be supressed. The solution of this problem looks very simple and we can summarize 
the procedure of the solution as follows: 

1. One solves eq. (47) with the initial condition of eq.(50). Thus we found the 
function @(Y - y,c, b,,bi). 

2. The next step is to find the solution of eq. (47) ‘#(yr - y) with the initial 
condition 

P(yry,~,br,b:)I~=~, = @(Y-y~,z,b,,b:). (62) 

3. A solution of eq. (47) @(y,r, b:) should be found which satisfies the initial 
condition of eq. (50) but with g(b:) instead of g(bt - b:). 

4. We specify function @(yr - y, 2, br, b:) extracting the value of 2 = z, from the 
matching condition: 

*(Y -ya,+br,b:) = *(yz,~mr t b’) . (63) 

5. To calculate the opaqueness R(yr - yr, 8, b,) we need to substituite in eq. (53) 

~‘(YI - YS, zm, bt, 0 
6. The equation (57) with the opaqueness C(yr - yr, B, b,) allows us to calculate 

the survival probability in the general case. 
The described general procedure could be specified using one of the previuos explicit 

solutions ( see eqs. (27 ), (39) or (52) ). W e d o not want to discuss the application of the 
above solution since it is better to do togather with some phenomenological estimates 
of the value of the vertices for pomeron - pomeron interaction (such as r+,r- and 
A). It only should be stressed that the resulting formula turns out to be much more 
complicated than the eikonal formula. I hope to publish a close investigation of the 
role of the pomeron interaction elsewhere rather soon. 

5 Conclusions. 

Concluding the paper I would like to repeat once more that an attempt was made 
in this paper to regenerate the Reggeon Calculus as a way to take into account the 
pomeron - pomeron interaction to understand the origin and the main property of 
shadowing (screening ) corrections. The approach is based on two principle assump- 
tions: 

1. The only “hard” processes with the typical scale of the transverse momentum 
of the order of Qe > p such as a,(@) Q 1 contribute to the structure of Pomeron. 
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2. We can introduce vertices for pomeron - pomeron interaction which are local in 
rapidity and in the impact parameter. 

Both assumptions look very natural from experience in perturbative QCD calcu- 
lations as well as from current experimental information. However we need a much 
more detailed study of the above assumptions. The main goal in this paper for me 
was tot convince the reader that the calculation of the shadowing corrections could be 
formulated as a theoretical problem with a restricted number of assuptions that could 
be checked experimentally at least. I will be happy if somebody will find arguments 
against my approach since such a discussion will be able to move us toward deeper 
understanding of the problem. 
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Figure Captions. 

Fig. 1: 

Fig. 2: 

Fig. 9: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. % 

Fig. 8: 

Fig. 9: 

The Pomeron as QCD - ladder. 

Scattering amplitude with Pomeron exchange. 

Eikonal diagrams. 

The structure of the parton cascade. 

The parton structure of eikonal diagrams. 

“Fan” diagrams. 

Pomeron interactions. 

Graphical representation of the equation for the sum of “fan” diagrams. 

“Fan” diagrams in hadron - hadrton collisions. 

Fig. 10: Pomeron - Pomeron rescattering diagrams in hadron - hadron collisions. 

Fig. 11: Diagrams for the general cue of Pomeron interactions. 

Fig. 12: Inclusive cross section. 

Fig. 13: Higgs boson production (inclusive cross section). 

Fig. 14: Higgs boson production )shadowing corrections). 
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